Lie Symmetry Classification of the Generalized Nonlinear Beam Equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lie Symmetry Classification of the Generalized Nonlinear Beam Equation

In this paper we make a Lie symmetry analysis of a generalized nonlinear beam equation with both second-order and fourth-order wave terms, which is extended from the classical beam equation arising in the historical events of travelling wave behavior in the Golden Gate Bridge in San Francisco. We perform a complete Lie symmetry group classification by using the equivalence transformation group ...

متن کامل

Lie Symmetry and Exact Solution of (2+1)-dimensional Generalized Kadomtsev-petviashvili Equation with Variable Coefficients

The simple direct method is adopted to find Non-Auto-Backlund transformation for variable coefficient non-linear systems. The (2+1)-dimensional generalized Kadomtsev-Petviashvili equation with variable coefficients is used as an example to elucidate the solution procedure, and its symmetry transformation and exact solutions are obtained.

متن کامل

Lie Symmetry Analysis of the Hopf Functional-Differential Equation

In this paper, we extend the classical Lie symmetry analysis from partial differential equations to integro-differential equations with functional derivatives. We continue the work of Oberlack and Wacławczyk (2006, Arch. Mech. 58, 597), (2013, J. Math. Phys. 54, 072901), where the extended Lie symmetry analysis is performed in the Fourier space. Here, we introduce a method to perform the extend...

متن کامل

Global Solution for the Nonlinear Beam Equation

We prove the existence and uniqueness of global solution for the nonlinear beam equation with initial boundary condition: Q in x f u g t u u M u u ) ( ) ( ) ( ) ( 2 2 2 = ′ + Δ ∇ − Δ + ′ ′ φ α where tt u t x u = ′ ′ ) , ( , t u t x u = ′ ) , ( , 0 > α , φ , , g M is nonlinear functions and Δ is Laplacian in n R .

متن کامل

Lie symmetry analysis for Kawahara-KdV equations

We introduce a new solution for Kawahara-KdV equations. The Lie group analysis is used to carry out the integration of this equations. The similarity reductions and exact solutions are obtained based on the optimal system method.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2017

ISSN: 2073-8994

DOI: 10.3390/sym9070115